решебник.ру - контрольные работы и типовые расчеты высшая математика кузнецов чудесенко
:: Главная страница | Решение задач: высшая математика, эконометрика, ::
Навигация

Решебник.Ру / Глава II. Древний Восток

Глава II. Древний Восток

5. Следующая группа клинописных текстов относится ко времени первой вавилонской династии, когда в Вавилоне правил царь Хаммурапи (около 1950 г. до н.э.) и семитское население подчинило себе исконных жителей – шумеров. В этих текстах мы видим, что арифметика развилась в хорошо разработанную алгебру. Египтяне того же периода были в состоянии решать только простые линейные уравнения, а вавилоняне времен Хаммурапи полностью владели техникой решения квадратных уравнений. Они решали линейные и квадратные уравнения с двумя неизвестными, решали даже задачи, сводящиеся к кубическим и к биквадратным уравнениям. Такие задачи они формулировали только при определенных числовых значениях коэффициентов, но их методы не оставляют никакого сомнения относительно того, что они знали общие правила.

Приведем пример, взятый из одной из глиняных табличек этого периода.

«Площадь 0,18 Kb, состоящая из суммы двух квадратов, составляет 1000. Сторона одного из квадратов составляет 0,21 Kb стороны другого квадрата, уменьшенные на 10. Каковы стороны квадратов?»

Это приводит к уравнениям 0,53 Kb, решение которых сводится к решению квадратного уравнения 0,5 Kb, имеющему положительный корень 0,23 Kb.

В действительности решение в клинописном тексте ограничивается, как и во всех восточных задачах, простым перечислением этапов вычисления, необходимого для решения квадратного уравнения:

«Возведи в квадрат 10; это дает 100; вычти 100 из 1000; это дает 900» и т. д.

Резко выраженный арифметико-алгебраический характер вавилонской математики проявляется и в геометрии. Как и в Египте, геометрия развивалась на основе практических задач измерения, но геометрическая форма задачи обычно является только средством для того, чтобы поставить алгебраический вопрос. Предыдущий пример показывает, как задача относительно площади квадрата приводит к нетривиальной алгебраической проблеме, и этот пример не составляет исключения. Тексты показывают, что вавилонская геометрия семитского периода располагала формулами для площадей простых прямолинейных фигур и для объемов простых тел, хотя объем усеченной пирамиды еще не был найден. Так называемая теорема Пифагора была известна не только для частных случаев, но и в полной общности. Основной чертой этой геометрии был все же ее алгебраический характер. Это в равной мере относится и ко всем позднейшим текстам, особенно к текстам третьего периода, от которого до нас дошло немалое их число, – эпохи нововавилонской, персидской и эпохи Селевкидов (примерно от 600 г. до н.э. до 300 г.н. ».). Тексты этого последнего периода обнаруживают значительное влияние вавилонской астрономии, которая в это время приобретает характер настоящей науки, что сказывается в тщательном анализе различных эфемерид. Вычислительная техника математических текстов становится еще более совершенной; алгебра справляется с задачами на уравнения, для которых требуется значительное вычислительное искусство. От эпохи Селевкидов дошли вычисления, которые доведены до семнадцатого шестидесятичного знака. Столь сложные вычислительные работы уже нельзя связывать с вычислением налогов или измерением – стимулом для них были астрономические задачи или просто любовь к вычислениям.

Многое в этой вычислительной арифметике выполнялось с помощью таблиц, в наборе которых есть и простые таблицы для умножения, и таблицы обратных величин, квадратных и кубических корней. В одной из таблиц имеется ряд чисел вида 0,24 Kb, которым, по-видимому, пользовались для решения кубических уравнений вида 0,26 Kb. В них содержатся некоторые превосходные приближения: для 0,21 Kb дается 0,25 Kb (0,56 Kb), для 0,39 Kb дается 0,39 Kb. Видимо, квадратные корни определялись по формуле наподобие следующей:

0,74 Kb.

Что касается значения 0,18 Kb, в большинстве случаев таблички обходятся библейским 0,21 Kb. Есть указания на то, что применялись и лучшие приближения, дававшие для 0,18 Kb значение 0,23 Kb.

Уравнение 0,26 Kb появляется в задаче, в которой требуется решить систему уравнений 0,59 Kb, что сводится к уравнению 0,45 Kb или, согласно таблицам, 0,24 Kb.

В клинописных текстах есть задачи и на сложные проценты. Например, ставится вопрос, за какое время удвоится сумма денег, ссуженная под 20 (годовых) процентов.

Это приводит к уравнению 0,37 Kb, которое решается так: сначала замечают, что 0,24 Kb, а затем применяют линейную интерполяцию. В наших обозначениях

0,6 Kb,

что дает для 0,17 Kb значение 4 года минус (2, 33, 20) месяцев.

По-видимому, одной из особых причин, вызвавших развитие алгебры примерно около 2000 г. до н.э., было то, что новые семитские правители Вавилона использовали прежнее шумерийское письмо. Это письмо, как и иероглифы, было набором идеограмм – каждый знак обозначал отдельное понятие. Семиты воспользовались им для фонетической записи слов своего языка и вместе с тем применяли некоторые знаки в их прежнем значении. Следовательно, эти знаки по-прежнему выражали понятия, но произносились иначе. Такие идеограммы были вполне пригодны для алгебраического языка, подобно нашим современным знакам +, –, ..., которые в действительности тоже идеограммы. В вавилонских школах администраторов этот алгебраический язык стал частью учебной программы на много поколений и, хотя власть переходила в руки новых правителей – касситов, ассирийцев, мидян, персов, эта традиция оставалась в силе.

Самые сложные задачи относятся к более поздним периодам в истории древней цивилизации, а именно, к персидской эпохе и эпохе Селевкидов. В те времена Вавилон уже не был политическим центром, но в течение ряда столетий он оставался интеллектуальной столицей обширной империи, в которой вавилоняне смешались с персами, греками, евреями, индусами и многими другими народами. Но во всех клинописных текстах видна непрерывность традиции, что, вероятно, указывает на местную непрерывность развития.

Можно быть уверенным в том, что этому развитию способствовало взаимно обогащавшее общение с другими цивилизациями. Мы знаем, что вавилонская астрономия этого периода оказала влияние на греческую и что вавилонская математика повлияла на вычислительную арифметику. Есть основания полагать, что вавилонские школы писцов были посредниками между наукой Греции и наукой Индии. Мы всё еще мало осведомлены о роли персидской и селевкидской Месопотамии в распространении древневосточной и античной астрономии и математики, но все доступные данные указывают на то, что эта роль должна была быть значительной. Средневековая арабская и индийская наука опиралась не только на традиции Александрии, но и на традиции Вавилона.

6. Во всей математике Древнего Востока мы нигде не находим никакой попытки дать то, что мы называем доказательством. Нет никаких доводов, мы имеем только предписания в виде правил: «делай то-то, делай так-то». Мы не знаем, как там были получены теоремы, например, как вавилонянам стала известна теорема Пифагора. Было сделано несколько попыток объяснить, как египтяне и вавилоняне получали свои результаты, но все они являются только предположениями. Нам, воспитанным на строгих выводах Евклида, весь этот восточный способ рассуждения кажется на первый взгляд странным и крайне неудовлетворительным. Но такое впечатление исчезает, когда мы уясняем себе, что большая часть математики, которой мы обучаем современных инженеров и техников, все еще строится по принципу «делай то-то и делай так-то», без большого стремления к строгости доказательств. Алгебру во многих средних школах все еще изучают не как дедуктивную науку, а скорее как набор правил. Видимо, восточная математика никогда не могла освободиться от тысячелетнего влияния технических проблем и проблем управления, для пользы которых она и была создана.

Следующая страница



:: Рекомендуемая литература. Ремендуем покупать учебную литературу в интернет-магазине Озон

VIP Казань — Казань для достойных людей





:: Статистика


математика

Проверить аттестат доверия
Яндекс цитирования

поставьте нашу кнопочку
у себя на сайте =)


 
Задачники: Демидович Б.П. для втузов, Берман Г.Н., Минорский В.П.
:: Copyright © Решебник.Ru :: Решения Кузнецов ::